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X-ray atomic scattering factors for aluminum are calculated from wave functions resulting from several 
variants of the Slater exchange approximation and are compared with the experimental and Hartree-Fock 
values. 

It has recently been suggested that Slater's (1951) approx- 
imation to the exchange operator appearing in the Hartree-  
Fock equations for one-electron orbitals of atomic structure 
could be modified advantageously. Schemes have been put 
forth by Robinson, Bassani, Knox & Schrieffer (1962), 
Lenander (1963), Lindgren (1963), and Kohn & Sham 
(1965). Robinson et al. suggested using a Thomas-Fermi  
screening correction, Kohn & Sham argue for a prefactor 
of ~, while Lenander and Lindgren suggested a variationally 
determined parametric form. 

It was thought desirable to ascertain the utility of these 
suggestions by a comparison with experimentally deter- 
mined data and a series of calculations were undertaken 
on some simple polyvalent metals. We report herein some 
results for aluminum. A more extensive report will appear 
elsewhere. 

We employ atomic units with energies expressed in ryd- 
bergs and lengths in bohrs. In these units, Slater's operator 
is 

Vex(r) = - 6 -8~ " e(r) . (1) 

The work of Robinson et al. resulted in (1) being multiplied 
by a screening function 

F(ct)=l  - 6- - - 3 ° t t a n - l - -  + 1 + In 1 + 

with (2) 

= ks~k! = 0" 64153158 D- 1/6(r) (3) 

where ks is the screening parameter appearing in the Fermi-  
Thomas dielectric function for a metal and kz is the radius 
of the Fermi sphere in momentum space. D(r) is the radial 
electron density. Lenander and Lindgren suggested the 
empirical form for the radial potential 

81 ] 1/3rn/3Dm/3(r) (4) ve.(r)= - c ~ 2  . . . . . . .  

r 

with C, n, and m as parameters to be varied until the energy 
minimum is achieved. In Slater's original suggestion, these 
three parameters are all equal to one. 

Discussion 

All the Slater exchange approximation self-consistent field 
(SCF) calculations were carried out to a self-consistency 
criterion on U(r) of 10 -4, where the radial one-electron 
potential is defined by 

- 2 Z  
V(r) . . . . . . .  U(r) (5) 

r 

with Z the atomic number of the nucleus. The scattering 
factors were calculated in the spherical approximation from 
the formula 

D(r)jo(qr)dr (6) f ( q ) =  0 

with D(r) the radial electron density and 

sin 0 2re 
q=4Jr . . . . . . . .  ). a (h2 + k2 + 12) ~" . (7) 

We have used for a, the lattice parameter of aluminum, 
the value of 4.0496 ,~. The numerical integration of (6) was 
carried out by a nine-point Newton-Cotes procedure and 
the fva lues  should be as reliable as the wavefunctions from 
which they were obtained. 

In Table 1, we list the atomic scattering factors resulting 
from the various approximations employed. We have as- 
sumed an isolated atom model for the charge distribution 
and the calculations have been made at the experimental 
points for comparison (Batterman, Chipman & DeMarco, 
1961). The meaning of the symbols in the column headings 
is as follows: 

HF Hartree-Fock (Clementi, 1965) 
HFS Hartree-Fock-Slater  
H F S - W T  Hartree-Fock-Slater  with tail correction 

(Herman & Skillman, 1963) 
Scr. HFS Screened Hartree-Fock-Slater  
K S - H F S - W T  Kohn-Sham ~ modification 
M H F S - W T  Empirically modified Hartree-Fock-Slater  

(Lindgren, 1965, Table 3). 

Table 1. Comparison o f  X-ray scattering factors for aluminum 

hkl sin 0/2 f(exp.) HF 
111 0-21385 8.63 +0.14 8"946 
200 0.24694 8-25 + 0.14 8.500 
220 0.34922 7.09 + 0.13 7.320 
311 0.40950 6.42 + 0.12 6"656 
222 0.42771 6-19 + 0.13 6.458 
400 0-49388 5.48 + 0.15 5.749 
331 0.53819 4.96 + 0" 14 5"296 
420 0.55217 4.67 + 0-13 5" 157 
422 0.60487 4.38 + 0.15 4.661 
511 0.64156 4.00+0-16 4"340 

HFS HFS-WT Scr. HFS KS-HFS-WT MHFS-WT 
9"090 9"084 9" 124 8"928 8"984 
8"614 8-621 8.631 8-492 8.529 
7.416 7-423 7"395 7-292 7"320 
6" 770 6"773 6"743 6"617 6"655 
6.578 6"579 6"550 6.416 6.457 
5.888 5.888 5.864 5.707 5.753 
5"443 5"442 5"423 5"256 5.304 
5.307 5-306 5.287 5-119 5-166 
4.814 4.812 4.798 4.628 4.674 
4.493 4.491 4"480 4.312 4.355 



932 S H O R T  C O M M U N I C A T I O N S  

As can be seen from the Table, there is a notable dif- 
ference in the results, yet one common attribute persists, 
i.e., all approximations yield scattering factors larger than 
experiment. This qualitative result held true in the band 
model calculations of Arlinghaus (1965). One can see that 
the M H F S - W T  approximation yield values closest to the 
H F  results. Whether this is generally true remains to be 
ascertained. 

All the Slater approximation SCF calculations listed 
herein were performed with a program written by the 
author in conjunction with Dr R.A.Moore .  Much help- 
ful correspondence with him is gratefully acknow- 
ledged. 
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Further developments in a likelihood ratio method for the precise and accurate determination of lattice 
parameters. By K.E. BEU, Physical Measurements Department, Development Laboratory, Goodyear Atomic Corpora- 
tion, Piketon, Ohio 45661, U.S.A. and D.R.WHITNEY, Ohio State University, Colombus, Ohio, U.S.A. 

(Received 8 July 1965 and in revised form 14 November 1966) 

A likelihood ratio method (LRM) was developed by Beu, Musil & Whitney in 1962 which accounted for 

e~, the variable component of systematic error in Bragg angle in the process of calculating a0, the maximum 
likelihood estimate of the lattice parameter (for cubic materials) under the hypothesis of 'no remaining 
variable systematic errors' in Bragg angle. In this note, the LRM has been generalized to include the con- 

stant component e. a0, now under two hypotheses of 'no remaining variable systematic errors' and 'no 
remaining constant systematic error', may be estimated provided the LRM test statistics W,n and U are 

both less than the corresponding critical values of the 72 distribution ; in this case, a0 is the maximum likeli- 
hood estimate of the lattice parameter, free of total (variable plus constant) systematic error within the 
precision of the Bragg angle measurements. 

A likelihood ratio method (LRM) has been developed for 
evaluating in a valid statistical manner the extent of syste- 
matic error removal from corrected Bragg angle measure- 
ments to aid in the calculation of precise and accurate lattice 
parameters. (Beu, Musil & Whitney, 1962; hereafter called 
reference 1; Beu, Musil & Whitney, 1963). The original 
L R M  was based on a hypothesis H of 'no remaining (vari- 
able) systematic errors' ( 'variable' was not explicitly stated 
in H of reference 1) in the corrected Bragg angle data and 
on an assumption that the algebraic sum of the variable 
error components (e0 is zero, namely E e~=0. Such an 

i 
assumption is required to keep the maximum likelihood 

estimates a0, d0, ~,  etc. (reference 1) from becoming in- 
determinate and to provide unique values for these esti- 
mates. In so doing, however, the e~ automatically become 
only one component of the total systematic error, namely, 
the variable component. The purpose of this note is to 
introduce the constant component e into L R M  theory so 
as to complete the generality of the LRM. With e, the L R M  
becomes completely general since e;, the total remaining 
systematic error, can be determined from et and e alone 
according to: e ~ = e, + e. 

A brief review of the original LRM theory is given to 
introduce the modification based on e. Complete details 
including additional definitions, derivations, calculation 
procedure and an example are given in a comprehensive 

report available from the authors (Beu & Whitney, 1965). 
The pertinent assumptions of the original L R M  are: 

E(~u i~) = 0, + e, (1) 

E e~ = 0 (2) 
where i 
E(~,i:,) is the expected or mean value of ~'t~ (~tth measure- 

ment of the ith Bragg angle) corrected for all known 
systematic errors. 

~,t is the average of m measurements of ~'t~,. 
0~ is the true but unknown value of the ith Bragg angle. 
e~ is the unknown variable systematic error remaining in 

the measured ith Bragg angle after correcting for all 
known systematic errors. 

E(~, i~,), ~u~, 0~, and e~ are all measured in degrees 0. 
The maximum likelihood estimate of the lattice param- 

A 

eter a0 (for cubic materials) under the hypothesis (Ht)* of 
'no remaining variable systematic errors' in the ~ is calcu- 
lated using a test statistic (Win) which is distributed like 
7. 2 (Mood, 1950). Wm is based on HI, on assumptions (1) 

and (2), and on the maximum likelihood estimates do, 0~, 
^ 

~, and at (standard deviation estimate of the ith Bragg 
angle). By comparing the numerical value of Wm with w~ 
(a critical value of the z 2 distribution), HI is or is not re- 

* HI in this note is identical with H in reference 1. 


